spiraX ${ }^{\text {sarco }}$

PPC and PPF Pressure Powered Pumps

How to select and size

From the inlet pressure, back pressure and filling head conditions given below, select the pump size and check valve package which meets the capacity requirement of the application.
Specify pump body, type PPC or PPF. Select optional extras as required. For liquid specific gravities from 0.9 to 0.65 consult Spirax Sarco.

Example

Condensate Load
$1640 \mathrm{~kg} / \mathrm{h}$
Steam pressure available for operating pump
Vertical lift from pump to the return piping
Pressure in the return piping (piping friction negligible) 1.7 bar g Filling head on the pump available

Selection

1. Calculate " H ", the total lift or back pressure, against which the condensate must be pumped. (see overleaf).

$$
=(9.2 \times 0.0981)+1.7=2.6 \text { bar } g .
$$

2. From capacity table, with 5.2 bar g inlet pressure and 2.8 bar g back pressure, choose a size $11 / 2$ pump which has a capacity of $1725 \mathrm{~kg} / \mathrm{h}$.

Note from capacity factor charts
A. Pump capacity filling head is $0.6 \mathrm{~m}: 1.2 \times 1725=2070 \mathrm{~kg} / \mathrm{h}$
B. Pump capacity using compressed air: $1.12 \times 1725=1932 \mathrm{~kg} / \mathrm{h}$ (\% Back pressure/Motive pressure is $2.6 \div 5.2=50 \%$)

Capacity kg/h

When installed with recommended filling head above top of pump of 0.3 m (\& liquid specific gravity $0.8-1.0$)

Operating Inlet	Total Lift or Back	Capacity (kg/h)			
Pressure	Pressure*		Pum	Size	
bar g	bar g	1	11122	2	3×2
8.6	1.0	1180	2134	3042	5130
8.6	2.8	1090	2043	2860	4808
8.6	4.1	1044	1768	2724	4626
6.9	1.0	1180	2088	2996	5080
6.9	2.8	1090	1907	2769	4717
6.9	4.1	1000	1634	2633	4490
5.2	1.0	1135	1907	2996	5080
5.2	2.8	1090	1725	2633	4444
5.2	4.1	908	1544	2270	3855
3.4	0.69	1090	1816	2906	4900
3.4	1.7	1044	1680	2633	4444
3.4	2.8	908	1453	2179	3720
1.7	0.34	1044	1907	2769	4717
1.7	0.69	953	1771	2542	4553
1.7	1.0	908	1498	2315	3945
0.69	0.14	908	1498	2315	3945
0.69	0.34	817	1316	1861	3174
0.34	0.14	726	1226	1725	2811

* Back pressure is the lift height (H) in metres $\times 0.0981$ plus pressure bar g in return line, plus downstream piping friction pressure drop in bar calculated at the lesser of six times the actual flow rate or 20,000 l / h.

Capacities

Capacity multiplying Factors for other filling heads

	Capacity multiplying Factors			
Filling Head	Pump Size			
m	1	$11 / 2$	2	3×2
0.15	0.7	0.7	0.7	0.84
0.3	1.0	1.0	1.0	1.0
0.6	1.2	1.2	1.2	1.08
0.9	1.35	1.35	1.35	1.20
1.2	-	-	-	-
1.8	-	-	-	-
2.1	-	-	-	-

Capacity multiplying Factors for motive gas supplies (other than steam)

10%	20%	30%	40%	50%	60%	70%	80%	90%
1.04	1.06	1.08	1.10	1.12	1.15	1.18	1.23	1.28

Vent to atmosphere

Recommended installation of pressure powered pump when fitted to a vented receiver. Flash steam must be vented or condensed ahead of pump inlet. Application details will dictate which of the following options will be necessary to accomplish this.

Inlet reservoir piping

When draining a single piece of equipment and a receiver is not supplied ahead of the pump, install with sufficient piping as given in the table below, and use a 0.3 m minimum filling head. This will prevent any flooding of the equipment while the pump is discharging.
Metres of reservoir piping above top of pump when pressure powered pump is installed without a receiver.
Pump sizes $1,11 / 2,2$ and 3×2.

$\begin{gathered} \hline \text { Liquid Load } \\ \mathrm{kg} / \mathrm{h} \end{gathered}$	Inlet Check Valve and Pipe Size			
	1	$11 / 2$	2	3
277 or Less	1.2m			
454	2 m	1.2 m		
681	3 m	1.5 m	1.2m	
908	4 m	1.8 m	1.5m	
1362		3 m	2.1 m	
1816		3.6m	3 m	
2270			3.6m	1.2m
2724				1.5 m
3178				1.8m
3632				2.1 m
4086				2.4 m
4540				2.7 m
9994				3 m

Inlet receiver capacities

Sufficient receiver volume is needed above the filling head level to accept the condensate reaching the pump during the discharge stroke. The receiver can be a length of pipe of large diameter or a tank. A vent for flash steam and any incondensable gas is essential and an overflow may be provided as shown.

