

spirax /sarco

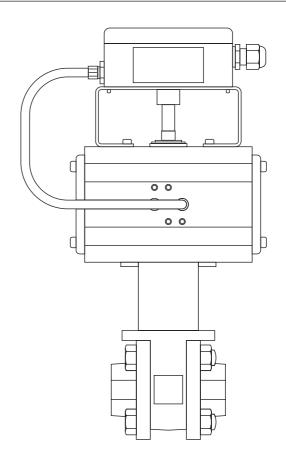
TI-P133-46

ST Issue 1

Cert. No. LRQ 110478

M15 ISO Ball Valve for Control of Fluids Sizing Sheet

Description


The M15 ISO ball valve is ideal for control applications. Both ball and seat are manufactured in chrome plated metal which ensures a long life, even with applications that constantly modulate the flow of the fluid. The valve is actuated by a double or single acting pneumatic actuator. The actuator is regulated by an electropneumatic positioner that receives a 4 - 20 mA signal from the process.

Advantages:

- Inherent equal percentage flow characteristic with high rangeability (32:1).
- Suitable for fluids that contain solids in suspension.
- Capacity is much higher than a same size globe valve.
- Less maintenance than spindle regulating valves.
- Small, compact and easily maintained.

Sizing

- 1. Determine the required C_V for the ball valve using the appropriate equation detailed below. With the first approximation for this calculation it is suggested to use a factor $F_L=0.68$, that corresponds to an opening of the valve of 72°.
- 2. Calculate the diameter of the pipe for maximum flow within the limits of velocity and pressure drop for the fluid.
- With the C_V and pipe diameter, use the table overleaf starting with the column that corresponds to the rotation of 72°, that gives F₁ = 0.68
- 4. In this column, choose the combination of ball valve diameter and pipe diameter that gives a C_V result the same or superior to the one calculated in step 1.
- It is recommended not to use a ball valve with a diameter less than half the pipe diameter, because of excessive tension that can produce vibrations.

Simplified equations for sizing $(K_V \text{ values} = C_V \times 0.86)$

For liquids									
Where:	Sub-critical flow	Critical flow							
Δ Pm = Maximum Δ P for sizing,									
When $P_2 > P_V$ use $\Delta Pm = F_L^2(P_1 - P_V)$	When:	When:							
When $P_2 \le P_V$ use $\Delta Pm = P_1 - \left[0.96 - 0.28 \sqrt{\frac{P_V}{P_C}} \right] P_V$	$\Delta P < \Delta Pm$	$\Delta P \ge \Delta Pm$							
C _V = Flow coeffecient of the valve	Volumetric flowrate	Volumetric flowrate							
F _L = Pressure recovery factor									
pr = Density at inlet temperature (water = 1.0 at STP)	$C_V = 1.16 \dot{V} \sqrt{\frac{pr}{AP}}$	$C_{V} = \frac{1.16\dot{V}}{F_{L}} \sqrt{\frac{pr}{\Delta Pm}}$							
P ₁ = Upstream pressure (bar a)	VΔP								
P ₂ = Downstream presure (bar a)									
P _V = Vapour pressure of the liquid at inlet temperature (bar a)									
P _C = Thermodynamic critical pressure (bar a)	Mass flowrate	Mass flowrate							
V = Flowrate in m³/h	$C_{V} = \frac{\dot{m}}{865 \sqrt{\Delta Ppr}}$	$C_{V} = \frac{\dot{m}}{865 F_{L} \sqrt{pr \Delta Pm}}$							
m = Flowrate in in kg/h	. 865 √∆Ppr	865 F _L √pr∆Pm							

Simplified equations for sizing $(K_V \text{ values} = C_V \times 0.86)$

For steam and gases Where: Sub-critical flow Critical flow C_V = Flow coeffecient of the valve When: When: F_L = Pressure recovery factor $\Delta P < 0.5 F_L^2 P_1$ $\Delta P \ge 0.5 \text{ F}_{L^2} P_1$ pr = Specific density of gas (air = 1) P_1 = Upstream pressure (bar a) For gases For gases (volumetric flowrate) (volumetric flowrate) P₂ = Downstream presure (bar a) $C_V = \frac{\mathring{V}}{295} \sqrt{\frac{prT}{P_1^2 - P_2^2}}$ $C_V = \frac{\dot{V}}{257} \ \frac{\sqrt{prT}}{F_L P_1}$ T = Inlet temperature in °K (°C + 273) \dot{V} = Flowrate of gas in Nm³/h (at 15°C and 1 bar a) m = Flowrate of gas in in kg/h For gases For gases (mass flowrate) (mass flowrate) T_{SO} = Superheating of steam in °C (Temperature of superheated steam - Temperature of saturated steam) ms = Flowrate of steam in kg/h For saturated steam For saturated steam Note: These equations are only a simplified version of the $C_V = \frac{\dot{m}_S}{13.81 \sqrt{P_1^2 - P_2^2}}$ original sizing equations of the ISA and IEC regulations. The $C_V = \frac{11.95}{11.95} F_L P_1$ results are sufficiently close for practical use. There could be a maximum error of 8% in the transition of non-choked flowrate to choked flowrate.

For superheated steam

 $C_V = \frac{\dot{m}_S (1 + 0.00126 T_{SO})}{13.81 \sqrt{P_1^2 - P_2^2}}$

For superheated steam

 $C_V = \frac{\dot{m}_S (1 + 0.00126 T_{SO})}{11.95 F_1 P_1}$

Cy values for reduced bore (RB) valves (Ky values = Cy x 0.86)

Valve size	Pipe size	0°	9°	18°	27°	36°	Rotation 45°	54°	63°	72 °	81°	90°
1/2"	1/2"	0.00	0.00	0.22	0.36	0.58	0.88	1.47	2.17	3.50	5.53	7.00
	3/4"	0.00	0.00	0.22	0.36	0.58	0.88	1.45	2.12	3.29	4.80	5.66
	1"	0.00	0.00	0.22	0.36	0.58	0.87	1.44	2.09	3.20	4.53	5.23
3/4"	3/4"	0.00	0.00	0.37	0.62	0.99	1.50	2.52	3.72	6.00	9.48	12.00
	1"	0.00	0.00	0.37	0.62	0.99	1.50	2.50	3.69	5.87	8.98	11.03
	11/4"	0.00	0.00	0.37	0.62	0.99	1.50	2.49	3.65	5.73	8.52	10.21
	11/2"	0.00	0.00	0.37	0.62	0.99	1.49	2.48	3.64	5.68	8.35	9.91
1"	1"	0.00	0.00	0.98	1.64	2.61	3.95	6.64	9.80	15.80	24.96	31.60
	11/4"	0.00	0.00	0.98	1.64	2.61	3.94	6.59	9.63	15.10	22.45	26.91
	11/2"	0.00	0.00	0.98	1.64	2.60	3.93	6.55	6.52	14.70	21.20	24.83
	2"	0.00	0.00	0.98	1.64	2.60	3.92	6.50	9.36	14.15	19.63	22.41
1¼"	11/4"	0.00	0.00	1.47	2.46	3.90	5.91	9.93	14.66	23.65	37.37	47.30
	11/2"	0.00	0.00	1.47	2.46	3.90	5.90	9.88	14.50	23.00	34.95	42.66
	2"	0.00	0.00	1.47	2.46	3.89	5.88	9.80	14.24	22.00	31.72	37.14
	21/2"	0.00	0.00	1.47	2.46	3.89	5.87	9.75	14.09	21.47	30.18	34.74
	11/2"	0.00	0.00	2.54	4.26	6.77	10.25	17.22	25.42	41.00	64.78	82.00
11/2"	2"	0.00	0.00	2.54	4.26	6.76	10.21	17.03	24.83	38.65	56.53	66.91
	21/2"	0.00	0.00	2.54	4.25	6.75	10.18	16.89	24.40	37.08	51.94	59.65
	3"	0.00	0.00	2.54	4.25	6.74	10.15	16.75	23.97	35.63	48.16	54.12
2"	11/2"	0.00	0.00	3.72	6.24	9.90	15.00	25.20	37.20	60.00	94.80	120.00
	21/2"	0.00	0.00	3.72	6.24	9.89	14.98	25.10	36.88	58.70	89.92	110.53
	3"	0.00	0.00	3.72	6.24	9.88	14.94	24.93	36.33	56.56	82.73	97.93
	4"	0.00	0.00	3.72	6.23	9.87	14.90	24.73	35.75	54.43	76.46	87.97
21/2"	21/2"	0.00	0.00	6.08	10.19	16.17	24.50	41.16	60.76	98.00	154.84	196.00
	3"	0.00	0.00	6.08	10.19	16.16	24.46	40.99	60.22	95.79	146.53	179.90
	4"	0.00	0.00	6.08	10.18	16.14	24.38	40.60	59.01	91.13	131.31	153.72
	6"	0.00	0.00	6.08	10.17	16.11	24.28	40.16	57.67	86.43	118.31	133.91
FL		-	-	0.96	0.94	0.92	0.88	0.82	0.75	0.68	0.62	0.50