Cert. No. LRQ 110478 ISO 9001

spirax sarco
 M45 ISO Ball Valve for Control of Fluids Sizing Sheet

Description

The M45 ISO ball valve is ideal for control applications. Both ball and seat are manufactured in chrome plated metal which ensures a long life, even with applications that constantly modulate the flow of the fluid. The valve is actuated by a double or single acting pneumatic actuator. The actuator is regulated by an electropneumatic positioner that receives a 4-20 mA signal from the process.

Advantages:

- Inherent equal percentage flow characteristic with high rangeability (32:1).
- Suitable for fluids that contain solids in suspension.
- Capacity is much higher than a same size globe valve.
- Less maintenance than spindle regulating valves.
- Small, compact and easily maintained.

Sizing

1. Determine the required C_{V} for the ball valve using the appropriate equation detailed below. With the first approximation for this calculation it is suggested to use a factor $F_{L}=0.68$, that corresponds to an opening of the valve of 72°.
2. Calculate the diameter of the pipe for maximum flow within the limits of velocity and pressure drop for the fluid.
3. With the C_{V} and pipe diameter, use the table overleaf starting with the column that corresponds to the rotation of 72°, that gives $F_{L}=0.68$.
4. In this column, choose the combination of ball valve diameter and pipe diameter that gives a C_{v} result the same or superior to the one calculated in step 1.
5. It is recommended not to use a ball valve with a diameter less than half the pipe diameter, because of excessive tension that can produce vibrations.

Simplified equations for sizing (K_{v} values $=\mathrm{C}_{\mathrm{v}} \times 0.86$)

| For liquids | |
| :--- | :--- | :--- | :--- |

Simplified equations for sizing (K_{v} values $=C_{v} \times 0.86$)

For steam and gases

Where:

$\mathrm{C}_{\mathrm{v}}=$ Flow coeffecient of the valve
$\mathrm{F}_{\mathrm{L}}=$ Pressure recovery factor
pr = Specific density of gas (air = 1)
$\mathrm{P}_{1}=$ Upstream pressure (bar a)
$\mathrm{P}_{2}=$ Downstream presure (bar a)
$\mathrm{T}=$ Inlet temperature in ${ }^{\circ} \mathrm{K}\left({ }^{\circ} \mathrm{C}+273\right)$
$\dot{\mathrm{V}}=$ Flowrate of gas in $\mathrm{Nm}^{3} / \mathrm{h}$ (at $15^{\circ} \mathrm{C}$ and 1 bar a)
$\dot{m}=$ Flowrate of gas in in kg / h
$\mathrm{T}_{\text {so }}=$ Superheating of steam in ${ }^{\circ} \mathrm{C}$ (Temperature of superheated steam - Temperature of saturated steam)
$\dot{m}_{\mathrm{s}}=$ Flowrate of steam in kg/h

Note: These equations are only a simplified version of the original sizing equations of the ISA and IEC regulations. The results are sufficiently close for practical use. There could be a maximum error of 8% in the transition of non-choked flowrate to choked flowrate.

Sub-critical flow

When:

$\Delta \mathrm{P}<0.5 \mathrm{~F}^{2} \mathrm{P}_{1}$

For gases
(volumetric flowrate)
$\mathrm{C}_{\mathrm{V}}=\frac{\dot{\mathrm{V}}}{295} \sqrt{\frac{\mathrm{prT}}{\mathrm{P}_{1}{ }^{2}-\mathrm{P}_{2}{ }^{2}}}$

For gases
(mass flowrate)
$C_{V}=\frac{\dot{\mathrm{m}} \sqrt{\mathrm{T}}}{360 \sqrt{\left(\mathrm{P}_{1}{ }^{2}-\mathrm{P}^{2}{ }^{2}\right) \mathrm{pr}}}$
For saturated steam
$\mathrm{C}_{\mathrm{V}}=\frac{\dot{\mathrm{m}}_{\mathrm{S}}}{13.81 \sqrt{\mathrm{P}_{1}{ }^{2}-\mathrm{P}_{2}{ }^{2}}}$
For superheated steam
$\mathrm{C}_{\mathrm{V}}=\frac{\dot{\mathrm{m}}_{\mathrm{S}}\left(1+0.00126 \mathrm{~T}_{\mathrm{so}}\right)}{13.81 \sqrt{\mathrm{P}_{1}{ }^{2}-\mathrm{P}_{2}{ }^{2}}}$

Critical flow

When:

$\Delta \mathrm{P} \geq 0.5 \quad \mathrm{~F}^{2} \mathrm{P}_{1}$

For gases
(volumetric flowrate)
$C_{V}=\frac{\dot{V}}{257} \frac{\sqrt{\mathrm{prT}^{\prime}}}{\mathrm{F}_{\mathrm{L}} \mathrm{P}_{1}}$

For gases
(mass flowrate)
$C_{V}=\frac{\dot{m} \sqrt{T}}{311 \mathrm{~F}_{\mathrm{L}} \mathrm{P}_{1} \sqrt{\mathrm{pr}}}$
For saturated steam
$\mathrm{C}_{\mathrm{V}}=\frac{\dot{\mathrm{m}}_{\mathrm{S}}}{11.95 \mathrm{~F}_{\mathrm{L}} \mathrm{P}_{1}}$

For superheated steam
$\mathrm{C}_{\mathrm{V}}=\frac{\dot{\mathrm{m}}_{\mathrm{S}}\left(1+0.00126 \mathrm{~T}_{\mathrm{so}}\right)}{11.95 \mathrm{~F}_{\mathrm{L}} \mathrm{P}_{1}}$
C_{V} values (K_{v} values $=C_{V} \times 0.86$)

Valve size	Pipe size	0°	9°	18°	27°	36°	$\begin{gathered} \text { Rotation } \\ 45^{\circ} \end{gathered}$	54°	63°	72°	81°	90°
DN25	25 mm	0.00	0.00	0.96	1.61	2.56	3.88	6.51	9.61	15.50	24.49	31.00
	32 mm	0.00	0.00	0.96	1.61	2.56	3.87	6.48	9.50	15.06	22.85	27.86
	40 mm	0.00	0.00	0.96	1.61	2.56	3.87	6.45	9.42	14.73	21.75	25.92
	50 mm	0.00	0.00	0.96	1.61	2.55	3.86	6.41	9.29	14.24	20.27	23.52
DN40	40 mm	0.00	0.00	2.94	4.93	7.82	11.85	19.91	29.39	47.40	74.89	94.80
	50 mm	0.00	0.00	2.94	4.93	7.81	11.81	19.74	28.86	45.28	67.26	80.57
	65 mm	0.00	0.00	2.94	4.92	7.80	11.78	19.57	28.33	43.30	61.23	70.77
	80 mm	0.00	0.00	2.94	4.92	7.79	11.74	19.38	27.77	41.39	56.16	63.24
DN50	50 mm	0.00	0.00	3.41	5.72	9.08	13.75	23.10	34.10	55.00	86.90	110.00
	65 mm	0.00	0.00	3.41	5.72	9.08	13.74	23.05	33.94	54.33	84.33	104.92
	80 mm	0.00	0.00	3.41	5.72	9.07	13.71	22.93	33.57	52.85	79.08	95.30
	100 mm	0.00	0.00	3.41	5.72	9.06	13.69	22.80	33.15	51.26	74.04	86.83
DN65	65 mm	0.00	0.00	7.15	11.99	19.02	28.81	48.41	71.46	115.25	182.10	230.50
	80 mm	0.00	0.00	7.15	11.99	19.00	28.74	48.09	70.45	111.15	167.10	202.12
	100 mm	0.00	0.00	7.15	11.97	18.96	28.60	47.44	68.43	103.70	144.56	165.48
	150 mm	0.00	0.00	7.14	11.96	18.91	28.44	46.71	66.31	96.71	127.22	140.79
DN80	80 mm	0.00	0.00	8.99	15.08	23.93	36.25	60.90	89.90	145.00	229.10	290.00
	100 mm	0.00	0.00	8.99	15.07	23.91	36.17	60.53	88.71	140.16	211.30	256.20
	150 mm	0.00	0.00	8.99	15.06	23.86	36.00	59.74	86.30	131.20	183.85	211.18
	200 mm	0.00	0.00	8.98	15.06	23.84	35.93	59.40	85.27	127.65	174.44	197.26
DN100	100 mm	0.00	0.00	17.36	29.12	46.20	70.00	117.60	173.60	280.00	442.40	560.00
	150 mm	0.00	0.00	17.35	29.10	46.10	69.66	116.00	168.58	260.27	374.87	438.72
	200 mm	0.00	0.00	17.35	29.08	46.03	69.40	114.81	164.97	247.56	339.58	384.87
	250 mm	0.00	0.00	17.35	29.06	45.98	69.24	114.10	162.89	240.69	322.47	360.47
DN150	150 mm	0.00	0.00	23.25	39.00	61.88	93.75	157.50	232.50	375.00	592.50	750.00
	200 mm	0.00	0.00	23.25	38.99	61.85	93.66	157.07	231.12	369.29	570.71	707.20
	250 mm	0.00	0.00	23.25	38.99	61.82	93.55	156.53	229.43	362.50	546.56	662.73
	300 mm	0.00	0.00	23.25	38.98	61.80	93.47	156.18	228.32	358.16	532.04	637.31
F_{L}		-	-	0.96	0.94	0.92	0.88	0.82	0.75	0.68	0.62	0.50

