

TI-P186-08

CH Issue 11

SRV66 Sanitary Pressure Reducing Valve

Description

The SRV66 is an angle pattern self-draining sanitary pressure regulating valve of all 316 type stainless steel construction suitable for use on steam, water and inert industrial gases. It is available with hygienic sanitary clamp compatible connections to ISO 2852, requires no external pressure sensing line and has clean in place (CIP) and sterilise in place (SIP) capability.

Typical applications include: Clean steam, gas and liquid supplies to bioreactors, centrifuges, freeze dryers, sterilisers, autoclaves, process tanks, humidifiers and culinary equipment.

Valve tightness

Valve tightness is in accordance with VDI/VDE guideline 2174 (leakage rate < 0.5% of K_V s value).

Standard surface finish and cleaning

Internal wetted parts - Ra < 3.2 µm ultrasonically cleaned.

Available options, supplied on request at extra cost:

Polished version	For food, pharmaceutical and superclean applications with surface roughness: Ra \leq 0.25, 0.4 or 0.8 μm	
Viton (FEPM)	Elastomer soft seat	
	Aseptic	
	ASME BPE clamp	
Special connections	ASME or JIS flanges	
	NPT screwed	
	Welding spigots	

Note: Other connections/constructions are available upon request

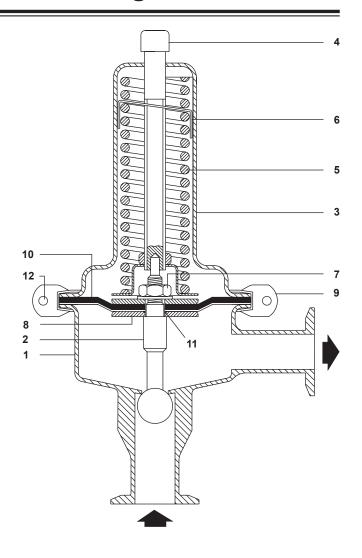
Oil and grease free

FDA approved diaphragm material

Certification options

The following are available at an additional cost:

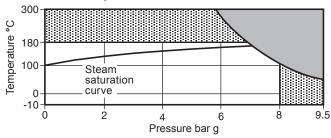
- FDA approval for wetted parts.
- USP class IV approval for wetted parts.
- Surface roughness certificate for wetted surfaces.
- Confirmation that the parts in this product contain only animal-free derivatives.


These items are subject to quotation and must be specified when ordering.

Sizes and end connections

DN15, DN20, DN25, DN32, DN40 and DN50 ISO 2852 sanitary clamp compatible.

Pressure/temperature limits


See overleaf

Materials

No.	Part	Material	
1	Body (integral seat)	Stainless steel	1.4404 (316L)
2	Main valve	Stainless steel	1.4404 (316L)
3	Spring housing	Stainless steel	1.4404 (316L)
4	Adjustment screw	Stainless steel	BS 6105 A4 70
5	Spring	Stainless steel	1.4301 (304)
6	Spring clip	Stainless steel	1.4301 (304)
7	Diaphragm nut	Stainless steel	BS 6105 A4 70
8	Diaphragm plate	Stainless steel	1.4404 (316L)
9	'V' band clamp	Stainless steel	1.4404 (316L)
10	Diaphragm	FPM (Viton)/ PTF	E
11	'O' ring	PTFE	
12	'V' band clamp screw	Stainless steel	BS 6105 A4 70

Pressure/temperature limits

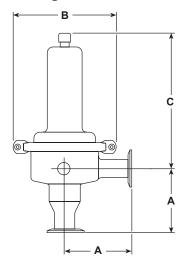
The product must not be used in this region.

The product should not be used in this region or beyond its operating range as damage to the internals may occur.

Body design conditions	Inlet	PN10
	Outlet see 'Press	ure setting range' below
Maximum design pressi	ure	9.5 bar @ 50°C
Maximum design temperature		300°C @ 5.8 bar
Minimum design temperature		-10°C
Maximum operating temperature		180°C
Maximum operating pressure (inlet)		8 bar g
Minimum operating temperature		-10°C
Designed for a maximum cold hydraulic test pressure of 15.2 bar g		

Pressure setting range

Size	DN15 - DN50			
Inlet/outlet rating	PN10 / PN2.5 PN10 / PN6 PN10 / PN10			
Spring range	0.3 - 1.1 bar g	0.8 - 2.5 bar g	1.0 - 5.0 bar g	
Maximum permitted outlet pressure = 1.5 times set pressure				


K_V values

To maximise the control accuracy (especially for large load variations) use the K_V values given at 20% offset. For safety valve sizing use the maximum K_V values.

DN15	DN20	DN25	DN32	DN40	DN50
2.0	3.0	3.5	4.0	4.5	5.2
2.6	3.9	4.6	5.2	5.9	6.8
	2.0	2.0 3.0	2.0 3.0 3.5	2.0 3.0 3.5 4.0	2.0 3.0 3.5 4.0 4.5

 $C_V (UK) = K_V \times 0.93$ $C_V (US) = K_V \times 1.156$ For conversion:

Dimensions/weights (approximate) in mm and kg

Pressure range	Size	Α	В	С	Weight
1.0 to 5.0 bar and 0.8 to 2.5 bar	DN15 - DN25	90	138	200	2.0
	DN32 - DN40	120	138	200	2.5
	DN50	120	138	200	3.0
0.3 to 1.1 bar	DN15 - DN25	120	200	200	3.0
	DN32 - DN40	120	200	200	3.5
	DN50	120	200	200	4.0

Sizing

The required K_V can be calculated from the following formulae:

m̂_s = Steam mass flow (kg/h)

= Liquid volume flow (m3/h)

= Gas flow at standard conditions: 0°C @ 1.013 bar a (m³/h)

= Upstream pressure (bar absolute)

= Downstream pressure (bar absolute)

(pressure drop factor)

= Specific gravity

Absolute average gas temperature (Kelvin = °C + 273)

Steam Critical pressure drop: $P_2 \le 0.58 P_4$

$$K_V = \frac{\dot{m}_s}{12 P_1}$$

Non-critical pressure drop: $P_2 \ge 0.58 P_1$

$$K_V = \frac{\dot{m}_s}{12 \; P_1 \; \sqrt{1 \; - \; 5.67 \; (0.42 \; - \; \chi \;)^2}}$$

Gas

$$K_V = \frac{\mathring{V}_g}{287} \sqrt{\frac{ST}{(P_1 - P_2)(P_1 + P_2)}}$$

Liquid

$$K_V = \mathring{V} \sqrt{\frac{S}{P_1 - P_2}}$$

Calculating the Ky and selecting a suitable valve

Using your maximum flowrate and smallest differential pressure $(P_1 - P_2)$, calculate the required K_V from one of the above formulae. Select a valve K_V that is 30% greater than the calculated K_V . The optimum working range of the selected valve should ideally be within the range of 10 to 70% of its K_V .

Recommended fluid velocities

Steam	Saturated	10 to 40 m/s
	Superheated	15 to 60 m/s
Gas	up to 2 bar g	2 to 10 m/s
	above 2 bar g	5 to 40 m/s
Liquids		1 to 5 m/s

Safety information, installation and maintenance

For full details see the Installation and Maintenance Instructions (IM-P186-09) supplied with the product.

The SRV66 should always be fitted with the inlet vertical and the spring housing directly above the valve.

How to order example1 off Spirax Sarco DN25 SRV66 direct acting sanitary pressure reducing valve having a pressure range of 1 – 5 bar g a PN10 / PN6 rating, FPM diaphragm and ISO 2852 sanitary clamp compatible connections.

Spare partsThe spare parts available are detailed below. No other parts are supplied as spares.

Available spares

Diaphragm and 'O' ring 10, 11

How to order spares

Always order spares by using the description given in the column headed 'Available spares' and state the size, model and pressure range.

Example: 1 - Diaphragm and 'O' ring for a Spirax Sarco DN25 SRV66 direct acting pressure reducing valve having a pressure range of 1 - 5 bar, a PN10/PN6 rating and an FPM diaphragm.